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In this talk I give a method for gluing high energy or semiclassical resolvent
estimates, i.e. to obtain global resolvent estimates when analogous estimates are
known for local models. Such a method is useful because the estimates for the
local models can be obtained using different techniques, which might not be easy
to combine directly. The key point is the use of a microlocal understanding of the
propagation of semiclassical singularities to patch the resolvents.

As an application, one can describe solutions of the wave equation modulo
exponential decay when

(1) One has a model at infinity with good high energy resolvent estimates, such
as asymptotically hyperbolic spaces, see the work of Melrose, Sá Barreto
and the lecturer [7].

(2) One has ‘mild’ trapping in a compact set, such as normally hyperbolic
trapped sets, see the recent work of Wunsch and Zworski [10].

This combination gives a more robust way of analyzing wave propagation on de
Sitter-Schwarzschild space than done earlier in [7, 6], which relied on combining
the first listed ingredient with high energy estimates for the cutoff resolvent (i.e.
for the actual resolvent on the whole of de Sitter-Schwarzschild space, sandwiched
between cutoffs, due to Bony and Häfner [1], who used one dimensional techniques)
by the technique of Bruneau and Petkov [2].

We actually work with more general semiclassical resolvent estimates which
can be motivated as follows. Let P̃ = ∆g + V on a Riemannian manifold (X, g)
with a real potential V , and let R(λ) = (P̃ − λ)−1 be the resolvent of P̃ when
Im λ > 0, as well as its analytic continuation across the positive real axis (λ0,+∞),
λ0 sufficiently large, when this exists. A contour deformation (in τ , the dual of t)
argument shows that, as far as high energy behavior is considered, it suffices to
obtain polynomial (in Re τ) estimates for R(τ2), | Im τ | < Γ′, Γ < Γ′, in order to
understand the solutions of the wave equation modulo exponential decay e−Γt, in
spatially compact sets. With h = |Re τ |−1, and rewriting τ , one is left to consider
h−2(h2(∆ + V )− 1− z), with | Im z| ≤ Ch (and Re z is O(h2)).

The semiclassical principal symbol of the more general operator P = h2∆g +
V − 1 is p = |ξ|2g + V (x) − 1, which thus vanishes on the typically non-empty
characteristic set Σp = {(x, ξ) : p(x, ξ) = 0}, so even though the standard principal
symbol of P is elliptic, P is not elliptic in the semiclassical sense. From the local
perspective, the best case scenario is if p is real principal type, i.e. the Hamilton
vector field Hp does not vanish on Σp. This is analogous in the standard ps.d.o.
world to (micro)hyperbolic equations, such as the wave equation, where one has
the loss of one order of derivative relative to the elliptic case. Correspondingly,
one may hope for estimates such as ‖(P − z)−1‖ ≤ Ch−1, with the norm being as
an operator acting on some weighted spaces. These indeed hold in asymptotically
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hyperbolic spaces, see [7], acting on optimally weighted spaces. In smaller than
O(h) neighborhood of the real axis (Im z = 0), such estimates hold if (X, g) is a
non-trapping asymptotically Euclidean, or rather scattering, space, as proved by
the lecturer and Zworski [9], as well as in more general geometries as shown by
Cardoso and Vodev [3].

The semiclassical wave front set, WFh, of a function u, measures microlocally,
i.e. in T ∗X, whether u rapidly decays in h relative to some space (here, L2), see
e.g. [5]. Then real principal type propagation of singularities is the following:
Suppose that u ∈ h−NL2. Then WFh(u) \ WFh(Pu) is a union of maximally
extended nullbicharacteristics. Note that even if Pu = 0, this allows for WFh(u)
to be non-empty, much like solutions of the wave equations need not be smooth.

When one is considering a limit such as R(z), with Im z → 0, for which one
has an elliptic problem in Im z > 0, one can sometimes get a one-sided estimate:
if the backward bicharacteristic from (y, η) is disjoint from WFh(Pu), and Pu is
compactly supported, say, then (y, η) /∈ WFh(u). Thus, singularities propagate
forwards. This holds, for instance, on asymptotically hyperbolic spaces, as follows
from [7]. In other words, singularities do not appear ‘out of nowhere’ from −∞
along bicharacteristics. The same holds for solutions of operators of the form
P − iW , at least microlocally along bicharacteristics that reach T ∗W−1(1) in
finite time, where W ∈ C∞(X ′

1; [0, 1]) has W = 0 on X1 and W = 1 off a compact
set, see the work of Nonnenmacher and Zworski [8]. In fact, complex absorbing
potentials provide a convenient way of localizing problems to trapped sets, see e.g.
[10, 4], so our gluing construction is expected to be very useful in applications.

To set up the gluing problem, suppose X̄ is a compact manifold with boundary,
X its interior, x a boundary defining function, (X, g) is complete, P = h2∆g+V −1
is self-adjoint. Let X0 = {x < 4}, X1 = {x > 1}. The first serious assumption is
that level sets of x are (null)bicharacteristically convex in the overlap X0∩X1, i.e.
if γ is a nullbicharacteristic then ẋ(γ(t)) = 0 implies ẍ(γ(t)) < 0. This states x ◦ γ
can only have strict local maxima as critical points. It is this convexity that will
assure that the iterative construction we give ends in finitely many (three) steps.

Next, we assume that there are manifolds X ′
j , j = 0, 1, including Xj as open

sets, with some not necessarily self-adjoint semiclassical Schrödinger operators Pj ,
such that Pj |Xj

= P |Xj
. We also assume that X1 is bicharacteristically convex for

P1, i.e. that no (null)bicharacteristic of P1 can leave X1 and return there; this holds
in most cases of interest. Assume also that the resolvents Rj(z) extend analytically
to some set D ⊂ [−E,E] + i[−Ch, Ch], and, acting on certain weighted spaces,
with weight non-vanishing in X0 ∩X1 for R0 and in X1 for R1, satisfy polynomial
bounds ‖Rj(z)‖ ≤ aj(h) ≤ h−N , for 0 < h ≤ h0 and some N .

The most important assumption is a microlocal one on the Pj . Suppose q ∈
T ∗X ′

j is in the characteristic set of Pj , and let γ− : (−∞, 0] → T ∗X ′
j be the

backward Pj-bicharacteristic from q. We say that the resolvent Rj(z) is semiclas-
sically outgoing at q if u ∈ L2

comp(Xj) polynomially bounded, WFh(u) ∩ γ− = ∅
implies that q /∈ WFh(Rj(z)u), i.e. WFh could only arise from the past of q. Our
microlocal assumption is then that
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(0-OG) R0(z) is semiclassically outgoing at all q ∈ T ∗(X0 ∩X1) ∩ Σp,
(1-OG) R1(z) is semiclassically outgoing at all q ∈ T ∗(X0∩X1)∩Σp such that γ−

is disjoint from T ∗(X ′
1 \ (X \X0)), thus disjoint from any trapping in X1.

Theorem 1. There exists h0 ∈ (0, 1) such that for h < h0, R(z) continues ana-
lytically to D and obeys the bound ‖R(z)‖ ≤ Ch2a2

0a1 there, with the norm taken
in the same weighted space as for R0(z).

In particular, when a0 = C/h, we find that R(z) obeys (up to constant factor)
the same bound as R1(z), the model operator with infinity suppressed.

In order to prove the theorem, we construct a semiclassical parametrix. Let
χ1 ∈ C∞0 (X; [0, 1]) be such that χ1 = 1 near {x ≥ 3} and suppχ1 ⊂ {x > 2} and
let χ0 = 1− χ1. Define a right parametrix for P by

F ≡ χ0(x− 1)R0(z)χ0(x) + χ1(x + 1)R1(z)χ1, so

PF = Id+[P, χ0(x− 1)]R0(z)χ0 + [P, χ1(x + 1)]R1(z)χ1 ≡ Id+A0 + A1.

The error A0 + A1 is large, O(1), in h due to semiclassical propagation of singu-
larities, but using an iteration argument we can replace it by a small error.

The key point is that by the forward propagation of semiclassical singularities,
i.e. the outgoing assumptions on the resolvent, ‖A0A1‖L2→L2 = O(h∞). Indeed,
for a pair of points to be in the wave front relation of the product, there must
be a nullbicharacteristic of P going through three points in T ∗X over suppχ1,
supp dχ1(.+1) and supp dχ0(.−1) in this order, which is excluded by the convexity
assumption. This implies that iterating the parametrix construction, i.e. solving
away the A0 error using R1 and solving away the A1 error using R0, and repeating
once more, the error is O(h∞).
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